Инструменты анализа данных в электронных таблицах OpenOffice.org Calc

1. Подбор параметра

Термины и определения

Анализ «что-если» – процесс изменения значений ячеек и анализа влияния этих изменений на результат вычисления формул на листе.

Подбор параметра – способ поиска определенного значения ячейки путем изменения значения в другой ячейке. При подборе параметра приложение изменяет значение в одной конкретной в ячейке до тех пор, пока формула, зависящая от этой ячейки, не вернет требуемый результат.

Команда Подбор параметра находит только одно решение, даже если задача имеет несколько решений, и только для одной ячейки.

Перед применением рассматриваемого инструмента следует решить задачу средствами электронных таблиц с любыми исходными данными.

1.1. Инструмент анализа Подбор параметра

1. Составить таблицу, отвечающую требованиям:

• ячейка, в которой должен быть получен желаемый результат (*целевая ячейка*), должна содержать формулу, а значение в ней должно быть наиболее близким к тому, которое требуется получить;

ячейка, в которой должно быть выведено искомое значение, должна прямо или косвенно влиять на результат в целевой ячейке; она не должна содержать формулы, а только числовое значение, которое является исходным для формулы, находящейся в целевой ячейке.

2. Применить инструмент Подбор параметра (команда Сервис \ Подбор параметра).

3. В появившемся диалоговом окне Подбор параметра заполнить пустые поля. В поле Яч. с формулой ввести ссылку на ячейку, содержащую формулу. В поле Целевое значение ввести искомый результат. В поле Изменяемая ячейка ввести ссылку на ячейку, значение которой нужно подобрать.

Подбор параметра		
Настройки по умолчан	110	ок
<u>Я</u> ч. с формулой		
Целевое значение		Отмена
<u>И</u> зменяемая яч.		<u>С</u> правка

Диалоговое окно инструмента Подбор параметра

1.2. Примеры подбора параметра

Задача 1.1. Какие должны быть ежемесячные вклады в течение *12 месяцев* при процентной ставке *10,5%* годовых, чтобы по истечении срока на счету накопилась сумма в *100 000* руб.?

Решение.

1. Создать таблицу (вариант оформления листа приведен на рис.):

	А	В
1	Ежемесячный вклад	0,00p.
2	Срок (в месяцах)	12
3	Процентная ставка	10,5%
4	Сбережения	0,00p.

Вариант оформления листа

- в ячейке *B1* подбираемый параметр, установить в ячейке денежный формат (команда Формат \ Ячейки \ Число: Денежный);
- в ячейках B2:B3 исходные данные, в ячейке B3 установить процентный формат (команда Формат \ Ячейки \ Число: Процентный);
- в ячейке *B4* формула расчета ежемесячной выплаты:
 =*FV*(*B3/12;B2;-B1*)¹

установить в ячейке денежный формат.

2. Применить инструмент Подбор параметра. Для этого выполнить команду Сер-

вис \ Подбор параметра.

- 3. В появившемся диалоговом окне задать параметры:
- в поле Яч. с формулой ввести ссылку на формулу (\$B\$4);
- в поле Целевое значение ввести искомый результат (100000);
- в поле Изменяемая ячейка ввести ссылку на ячейку, значение которой нужно подобрать (\$B\$1).
- 4. Результат вычислений:

	A	В
1	Ежемесячный вклад	7 939,86p.
2	Срок (в месяцах)	12
3	Процентная ставка	10,5%
4	Сбережения	100 000,00p.

Результат вычислений

Ответ: ежемесячные вклады должны быть по 7939,86 р.

Задача 1.2. Решить линейное уравнение: ax+b=0. Решение.

1. Создать таблицу (вариант оформления листа на рис.):

	A	В		
1	Коэффициенты:			
2	a	Ь		
3	2	3		
4				
5	Формула	х		
6	=A3*B6+B3			

Вариант построения листа

- в ячейках A3:B3 исходные данные;
- в ячейке *B6* подбираемое значение переменной *x*;
- в ячейке A6 формула: =A3*B6+B3
- 2. Применить инструмент Подбор параметра:
- Яч. с формулой: \$A\$6; Целевое значение:0; Изменяемая ячейка: \$B\$6. Ответ: *x*=-1,5.

¹ Здесь и далее аналог функции в программе **Microsoft Excel** см. в Приложении

Задача 1.3. Тело брошено вертикально вверх со скоростью v=10 м/c с высоты h=5 м. Известно, что его положение относительно поверхности земли *у* (в метрах) в зависимости от времени *t* (в секундах) описывается функцией $y=h+vt-4,9t^2$. Определить момент времени, когда тело упадет на землю.

Решение.

1. Создать таблицу (вариант оформления листа на рис.):

	A	В
1	Скорость (V)	10
2	Высота (h)	5
3	Время (t)	0
4	Положение (у)	=B2+B1*B3-4,9*B3^2

Вариант построения листа

- в ячейках *B1:B2* исходные данные;
- в ячейке *B3* подбираемое значение момента времени;
- в ячейке *B4* формула, описывающая положение тела относительно земли: =B2+B1*B3-4,9*B3^2

2. Применить инструмент Подбор параметра, учитывая, что когда тело упадет на землю, значение y=0, следовательно в ячейке B4 число 0.

Яч. с формулой: \$B\$4; Целевое значение:0; Изменяемая ячейка: \$B\$3.

3. Результат вычислений:

	A	В
1	Скорость (v)	10
2	Высота (h)	5
3	Время (t)	-0,415431144
4	Положение (у)	3,16931E-05

Результат вычислений при начальном значении *t*=0

Данный результат вызывает большие сомнения (отрицательное значение времени). Поэтому надо выбрать кнопку *Отмена*.

4. В ячейке *B3*, установить значение таким образом, чтобы в ячейке *B4* появилось значение близкое к искомому -0. Таким значением может быть, например, число 2.

5. Повторно применить инструмент Подбор параметра. Результат вычислений:

	A	В
1	Скорость (v)	10
2	Высота (h)	5
3	Время (t)	2,456183348
4	Положение (у)	0,000933952

Результат вычислений при начальном значении *t*=2

Ответ: тело упадет на землю примерно через 2,5 секунды.

1.3. Косвенное влияние ячеек

В приведенных примерах формула непосредственно зависела от изменяемого параметра. Рассмотрим случай косвенного влияния ячеек.

Задача 1.4. (RADIANS, SIN, COS, IF, И). Траектория снаряда, вылетающего из орудия под углом α с начальной скоростью $v_0 M/c$, задается уравнениями:

$$\begin{cases} x = v_0 t \cos \alpha; \\ y = v_0 t \sin \alpha - 4,9t^2 \end{cases}$$
, где *t* – время в секундах.

При $v_0=30 \text{ м/c}$ и $\alpha=45^{\circ}$ определить, на какой высоте будет снаряд на расстоянии 50 м от орудия (x=50)?

Решение.

- 1. Создать таблицу (вариант оформления листа на рис.):
- в ячейках *B1:B2* исходные данные;
- в ячейке *B3* расстояние от орудия через время *t*:
 =*B2*B5*COS(RADIANS(B1))*
- в ячейке *B4* высота снаряда через время *t*:
 =*B2*B5*SIN(RADIANS(B1))-4,9*B5*²

Примечание. При написании формул необходимо учесть, что по условию задачи угол дан в градусах, а аргументы функций *SIN*, *COS* в ЭТ задаются в радианах. Для перевода значения из одной единицы измерения в другую используют функцию *RADIANS*.

	A	В
1	Угол	45
2	Скорость	30
3	Х	=B2*B5*COS(РАДИАНЫ(B1))
4	у	=B2*B5*SIN(РАДИАНЫ(B1))-4,9*B5^2
5	Время	

Вариант построения листа

2. Применить инструмент Подбор параметра.

Яч. с формулой: \$B\$4; Целевое значение:0; Изменяемая ячейка: \$B\$3.

3. Результат вычислений:

	A	В
1	Угол	45
2	Скорость	30
3	Х	50
4	у	22,7777778
5	Время	2,357022604

Результат вычислений

Ответ: тело будет примерно на высоте 23 м.

1.4. Нахождение корней уравнения

Нахождение корней полинома в ЭТ выполняется в два этапа:

- приближенное определение корней графическим методом;
- получение точных значений с помощью инструмента Подбор параметра.

Задача 1.5. Найти корни полинома третьей степени $x^3 - x^2 - x + 0, 5 = 0$.

Решение.

1. Подготовить лист для построения графика функции $y = x^3 - x^2 - x + 0,5$ на промежутке $[x_{Hary}, x_{KOH}]$ для 10 точек (вариант оформления листа на рис.):

	A	В	С	D	E	F
1	1 Исходные данные				Таблица данных	
2	х _{нач} =	-1,0			х	у
3	х _{кон} =	2,0			=B2	=E3^3-E3^2-E3+0,5
4	К-во точек =	10			=E3+\$B\$5	
5	шаг =	=(B3-B2)/(B4-1)				
6						
7						
8						
9						
10						
11						
12						

Вариант построения листа

- в ячейках B2:B3 промежуток построения графика, например, [-1,2] (подбирается опытным путем);
- в ячейке *B4* количество точек для построения графика, например *10* (также подбирается опытным путем);
- шаг вычисляется по формуле, зависящей от промежутка построения и количества точек:

=(B3-B2)/(B4-1)

- в ячейке *E3* ссылка на начальное значение *x*:
 =*B2*
- в ячейку *E4* ввести формулу вычисления следующего значения *x* и размножить (скопировать) в ячейки диапазона *E5:E12*:
 =*E3*+\$*B*\$5
- в ячейку F3 ввести формулу вычисления значения у и размножить (скопировать) в ячейки диапазона F4:F12:
 =E3^3-E3^2-E3+0,5
- 2. По данным диапазона *E3:F12* построить точечную диаграмму:

График функции $y = x^3 - x^2 - x + 0,5$ на промежутке [-1,2]

3. Полином третьей степени должен иметь три корня, следовательно, график должен трижды пересечь ось *Ox*. Построенный график имеет три точки перехода через ось *Ox*. Следовательно, мы нашли все три приближенных значения корней уравнения.

Если количество точек перехода не отвечает требованию, необходимо изменить интервал нахождения корней, а возможно и количество точек для построения графика.

4. Добавить на лист таблицу нахождения точных значений корней уравнения:

	C10 ▼ 🏂 =B10^3-B10^2-B10+0,5						
	A	В	С	D	E	F	
1	Исходные д	цанные			Таблица данных		
2	х _{нач} =	-1,0			х	у	
3	х _{кон} =	2,0			-1,00	-0,50	
4	К-во точек =	10			-0,67	0,43	
5	шаг =	0,3			-0,33	0,69	
6					0,00	0,50	
7					0,33	0,09	
8	8 Поиск корней				0,67	-0,31	
9	Корни	Приближение	γ		1,00	-0,50	
10	x1 =	-1,0	-0,50)	Į	1,33	-0,24	
11	x2 =	0,5	-0,13	ſ	1,67	0,69	
12	x3 =	1,5	0,13		2,00	2,50	

Поиск корней уравнения

- в ячейках *B10:B12* приближенные значения *x*, при которых график пересекает ось *Ox*, т.е. *y=0*; на графике (рис. 1.15) видно, что это могут быть значения: -1; 0,5 и 1,5;
- в ячейку *C10* ввести формулу вычисления значения у и размножить (скопировать) в ячейки диапазона *C11:C12*:
 =*B10^3- B10^2- B10+0,5*

5. Для поиска более точного значения x₁ применить инструмент Подбор параметра: Яч. с формулой: \$C\$10; Целевое значение:0; Изменяемая ячейка: \$B\$10.

6. Аналогично определить значение двух других корней.

Ответ: $x_1 \approx -0.85485$; $x_2 \approx 0.40304$; $x_3 \approx 1.45170$.

1.5. Задачи для самостоятельной работы

Задача 1.6. (РРМТ) По сумме займа (500 000 \$) и сроку займа (10 лет) определить процентную ставку, при которой ежемесячная плата составит 5000 \$.

Задача 1.7. (FV) На отпуск за год (учитывать только рабочие месяцы, т.е. 11) надо накопить определенную сумму денег (60 000 р.). Определить величину ежемесячных вкладов на счет в банк под 9,8% годовых.

Задача 1.8. (РРМТ) Какую максимальную ссуду на год можно взять, если вы вынуждены ограничить ежемесячные выплаты определенной суммой (например, 5000 р.), а процентная ставка в размере 13% начисляется в конце каждого месяца?

Задача 1.9. Тело брошено вертикально вверх со скоростью v m/c с высоты h m. Известно, что его положение относительно поверхности земли y (в mempax) в зависимости от времени t (в секундах) описывается функцией $y=h+vt-4,9t^2$.

а) Скорость $v=10 \ m/c$ и высота $h=5 \ m$. Определить момент времени, когда тело будет на высоте 8 m.

b) С какой скоростью нужно бросить тело с высоты h=5 m, чтобы через 2 секунды оно достигло высоты h=100 m?

с) С какой высоты нужно бросить тело со скоростью $v=5 \ m/c$, чтобы через 2 секунды оно упало на поверхность земли?

Задача 1.10. (RADIANS, SIN, COS, IF, И). Траектория снаряда, вылетающего из орудия под углом *α* с начальной скоростью *v*₀ *м/c*, задается уравнениями:

 $\begin{cases} x = v_0 t \cos \alpha; \\ y = v_0 t \sin \alpha - 4,9t^2 \end{cases}$, где *t* – время в секундах.

При $v_0 = 30 \text{ м/с}$ и $\alpha = 45^{\circ}$ определить:

а) Через какое время после выстрела снаряд упадет на землю.

b) Попадет ли снаряд в мишень, расположенную на расстоянии $85 \, m$ от орудия. Высота мишени – $2 \, m$, расстояние от ее нижней части до земли – $5 \, m$. Другими словами, надо определить положение снаряда (y) при x=85 и в отдельной ячейке сравнить полученное значение с высотой мишени.

Задача 1.11. Найти корни полиномов:

a) $2x^{3}-0.1x^{2}-0.7x+0.1=0$ b) $-x^{3}+0.2x^{2}+0.6x=0$ c) $3x^{2}+2.5x-1=0$ d) $-5x^{2}+2x+5=0$

Примечание. При поиске корней, обратите внимание на степень полинома.

1.6. Вопросы для самопроверки

- 1. Какие задачи можно решить с помощью инструмента Подбор параметра?
- 2. Как работает средство Подбор параметра?

3. Каким образом должен быть подготовлен лист электронных таблиц перед применением средства Подбор параметра?

- 4. Как вызвать инструмент Подбор параметра?
- 5. Какая ячейка называется целевой?
- 6. Может ли ячейка, влияющая на целевую, содержать формулу?
- 7. Сколько решений находит команда Подбор параметра?

ПРИЛОЖЕНИЕ. Некоторые стандартные функции

Математические функции

СУММ (аргумент1; аргумент2; ...) – суммирует указанные числа; в качестве аргументов можно указывать данные различных типов, но в подсчете участвуют только числа. Как правило, аргументами являются диапазоны ячеек.

OpenOffice.org Calc: функция SUM

СУММПРОИЗВ (массив1;массив2;массив3; ...) – перемножает соответствующие элементы заданных массивов (диапазонов) и возвращает сумму произведений.

Массив1, массив2, массив3, ... — от 2 до 30 массивов (диапазонов), чьи компоненты нужно перемножить, а затем сложить; они должны иметь одинаковые размерности..

OpenOffice.org Calc: функция **SUMPRODUCT**

РАДИАНЫ (угол) – преобразует величину угла из градусах в радианы. **OpenOffice.org Calc:** функция **RADIANS**

Финансовые функции

Аргументы:

Ставка - процентная ставка по ссуде.

Кпер – количество выплат по ссуде.

Пс – значение ссуды или общая (полная, приведенная) стоимость.

Ec - требуемое значение будущей стоимости, или остатка средств после последней выплаты. Если аргумент Ec опущен, то он полагается равным нулю, т.е. для займа, например, Ec=0.

Плт - это выплата, производимая в каждый период; это значение не может меняться в течение всего периода выплат. Если аргумент опущен, должно быть указано значение аргумента *Пс*.

Tun — число 0или 1 обозначающее, когда должна производиться выплата (0 или опущен - в конце периода; 1 - в начале)

ПЛТ (ставка;кпер;пс;бс;тип) - возвращает размер периодического платежа, необходимого для погашения ссуды за определенный период времени.

OpenOffice.org Calc: функция **PPMT**(Ставка; Период; Кпер; пс;бс; тип)

Пример 1. Определить размер ежемесячных платежей при ссуде в \$10000 на срок в 3 года под 9% годовых.

Ответ: =ПЛТ(9%/12;3*12;10000) =PPMT (9%/12; 1;3*12;10000)

БС (ставка;кпер;плт;пс;тип) - возвращает будущую стоимость инвестиции на основе периодических постоянных (равных по величине сумм) платежей и постоянной процентной ставки.

OpenOffice.org Calc: функция **FV**

Пример 2. Сколько будет на счету, если в течение 30 лет вкладывать по 2000 в месяц при 10% годовых.

Ответ: =БС(10%/12;30*12;-2000;;1)

=**FV**10%/12;30*12;-2000;;1)

ПС (ставка;кпер;плт;бс;тип) - возвращает приведенную (к текущему моменту) стоимость инвестиции. Приведенная (нынешняя) стоимость представляет собой общую сумму, которая на настоящий момент равноценна ряду будущих выплат.

OpenOffice.org Calc: функция **PV**

Пример 4. Условия страховки: 500 руб. платится в конце каждого месяца в течении 20 лет при 8% годовых.. Определить, общую стоимость выплат.

Ответ: =ПС(8%/12;20*12;500;;0)

= PV(8%/12;20*12;500;;0)

Логические функции

ЕСЛИ(лог_выражение;знач_если_истина;знач_если_ложь) – возвращает одно из двух значений:

Знач если истина, если лог выражение имеет значение ИСТИНА.

Знач если ложь, если лог выражение имеет значение ЛОЖЬ.

OpenOffice.org Calc: функция IF

Пример 4. Определить, является ли значение в ячейке *B1* положительным. Ответ: =ECЛИ(B1>0; "да"; "нет")

Литература

- 1. Кошелев В. Excel 2007. Эффективное использование. М.: Бином. Лаборатория знаний, 2008 544 с.
- 2. Лапчик М.П., Семакин И.Г., Хеннер Е.К.Методика преподавания информатики. 4-е изд. М.: Академия, 2007. 624 стр.
- 3. Орлов А.И. Теория принятия решений: Учеб. пособие. М.: Издательство "Март", 2004. 656 с.
- 4. Отставнов М. Прикладные свободные программы в школе. М.: Издательство "Медиа Технолоджи сервис", 2003. 96 с.: ил.
- 5. Слетова Л. Excel 2007 М.: "ЭКСМО", 2007 336 стр.
- 6. Сурядный А., Глушаков С. Microsoft Excel 2007: Самоучитель. 2-е изд. М.: ACT, 2008 - 416 стр.
- Шихин Е.В., Чхартишвили А.Г. Математические методы и модели в управлении: Учеб. пособие. – 3-е изд. – М.: Дело, 2004. – 440 с. – (Сер. «Классический университетский учебнк»).