Электронные таблицы Excel. Основные термины и определения

- 1. Термины и Определения
- 2. Адресация относительная и абсолютная.
- 3. Ввод информации.
- 4. Запись формул.
- 5. Некоторые встроенные функции
- 6. Практические советы.
- 7. Условное форматирование.
- 8. Использование имен диапазонов.

1. Термины и Определения

Электронные таблицы - это компьютерные программы, предназначенные для экономистов, бухгалтеров, инженеров, научных сотрудников - всех тех, кому приходится работать с большими массивами числовой информации. Эти программы позволяют обрабатывать числовую информацию с помощью компьютера, сохранять ее во внешней памяти и получать копии на бумаге.

В ЭТ информация организована в виде прямоугольной таблицы. Информационная структура в такой таблице не статистическая, а динамическая, т.е. с изменением исходных данных происходит автоматический пересчет вычисляемых данных.

Электронные таблицы - программа обработки данных, представленных в виде прямоугольной таблицы.

Рабочая книга - основной документ *Excel*, который состоит из отдельных рабочих листов, в которых могут храниться данные.

Ячейка - пересечение строки и столбца. Каждая ячейка имеет свое обозначение (адрес ячейки). Ячейки таблицы могут содержать числа, текст или формулы, задающие зависимость значения одной ячейки от других.

Ссылка на ячейку (адрес ячейки) - обозначение столбца и номера строки, в которых расположена ячейка.

Каждая ячейка имеет оригинальный адрес: столбец/строка (например, А5: ячейка, находящаяся на пересечении столбца А и строки 5).

Группа ячеек - прямоугольная часть таблицы.

Формула - это выражение, которое определяет способ вычисления ячейки.

Заголовок строки – серая область с номером строки в левой части экрана.

Заголовок столбца – серая область с буквой или номером столбца в верхней части каждого столбца.

2. Адресация относительная и абсолютная.

Ссылка в формуле указывает на ячейку или диапазон ячеек листа и передает сведения о расположении значений или данных, которые требуется использовать в формуле.

В зависимости от выполняемых задач в Excel можно использовать <u>относительные</u> ссылки, определяющие положение ячейки относительно положения ячейки формулы, или <u>абсолютные</u> ссылки, которые всегда указывают на конкретные ячейки.

Различия между относительными и абсолютными ссылками

При создании формулы, содержащей ссылку на ячейку, ссылка на ячейку будет обновлена, если ячейка перемещалась или копировалась. Такие ссылки называются *относительными*.

Если требуется, чтобы формула ссылалась на одну и ту же ячейку, независимо от копирования, удаления расположенных над ячейкой строк или слева от ячейки столбцов или перемещения ячеек, используют *абсолютные ссылки*. Запись абсолютных ссылок от относительных отличается наличием знака \$ перед координатами ячейки. Например, \$А\$2

Ссылка, в которой одна из координат является относительной, а вторая абсолютной называются *смешанными*. Например, \$B6, B\$2.

Rm. Переключение между относительными и абсолютными ссылками - F4.

3. Ввод информации.

Excel разрешает вводить в ячейки следующие виды информации:

- Числовые значения (например, числа 15,25; \$29.95, 33% и даже простые дроби, в этом случае между целой и дробной частью ставят пробел: 2 3/7).
- Текстовые значения (например, слова «Итого», «1-й квартал» и т.д.
- Даты и время суток.
- Формулы.
- Примечания, предназначенные для вас или других пользователей.
- Гиперссылки на адреса Интернета и другие документы.
- Картинки, фотографии, карты и иллюстрации.

Каждый тип информации имеет свои собственные характеристики формата. Это означает, что *Excel* выводит на экран элементы каждого типа по-разному.

4. Запись формул.

Если значение ячейки определяется в результате вычислений, то в ячейку записывается формула. Формула начинается со знака "равно" (=). При записи формул используют:

- числа;
- знаки арифметических операций (в прядке выполнения: ^ * / + -);
- скобки;
- ссылки;
- функции;
- знаки сравнений (<,>,<=,>=,<>).

5. Некоторые встроенные функции

Функция – заранее определенное выражение, которое имеет один или несколько аргументов и возвращает единственное значение.

В состав Excel входит более 250 функций, поделенные на отдельные категории: математические, статистические, логические, дата и время и др. Описание функций можно посмотреть через операцию вставки функций: Вставка \ Функции...

Математические функции

ОСТАТ(число; делитель) - возвращает остаток от деления числа на делитель. Результат имеет такой же знак, как и делитель.

Например, =ОСТАТ(3;2) Ответ: 1

ОКРУГЛ(число;число_разрядов) - округляет число до указанного количества десятичных разрядов по правилам математики.

Число округляемое число.

Число_разрядов - количество десятичных разрядов, до которого нужно округлить число. Если 0 – то до целого.

Например,

=ОКРУГЛ(3,2;0) Ответ: 3

=ОКРУГЛ(3,8;0) Ответ: 4

ОКРУГЛВВЕРХ(число;число_разрядов) - округляет число до ближайшего большего по модулю значения.

Например,

=ОКРУГЛВВЕРХ(3,2;0) Ответ: 4 =ОКРУГЛ(3,14;1) Ответ: 3,2

ОКРУГЛВНИЗ(число;число_разрядов) - число всегда округляется с недостатком.

СЛЧИС() - возвращает случайное число из диапазона [0,1). Новое случайное число возвращается при каждом вычислении рабочего листа.

Примечание.

Диапазон	Тип	Формула	Пример
[a,b)	Вещ.	СЛЧИС()*(b-a)+а	=СЛЧИС()*(10-5)+5 – случ.число из [5,10)
[a,b]	целый	ОКРУГЛ(СЛЧИС()*(b-a);0)+а	=ОКРУГЛ(СЛЧИС()*(10-5);0)+5 – одно из чисел
			1,2,3,4 или 5

СУММ(аргумент1; аргумент2; ...) – суммирует указанные числа.

В качестве аргументов можно указывать данные различных типов, но в подсчете участвуют только числа. Как правило, аргументами являются диапазоны ячеек.

СУММЕСЛИ(Диапазон; критерий; Сумм_диапазон) – суммирует значения ячеек внутри диапазона «Сумм_диапазон», для которых соответствующие значения из «Диапазон» удовлетворяют заданному критерию.

Диапазон - это диапазон ячеек, среди которого ищем те, значения которых удовлетворяют критерию. *Критерий* - это критерий в форме числа, выражения или текста, который определяет, какие ячейки надо подсчитывать. Например, критерий может быть выражен как 32, "32", ">32", "</32", ">32", "</32", ">32", ">32", "</32", ">32", "</32", ">32", "</32", ">32", "</32", "</32", "</32", "</32", ">32", "</32", "</32", "</32", "</32", "</32", "</32", "</32", "</32", "</32", "</32", "</32", "</32", "</32", "</32", "</32", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</33", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34", "</34",

Сумм_диапазон – диапазон фактических ячеек для суммирования. Ячейки в «Сумм_диапазон» суммируются, только если соответствующие им ячейки в аргументе «Диапазон» удовлетворяют критерию. Если «Сумм_диапазон» опущен, то суммируются ячейки из «Диапазона».

Например,

	A	В	С
1	Стоимость дома, у.е.	Комиссионные, у.е.	
2	10000	700	
3	20000	1400	
4	30000	2100	
5	40000	2800	
	=СУММЕСЛИ(А2:А5;">210)00";B2:B5)	

В ячейку с формулой (A6) будет занесено число 4900 (B4+B5=2100+2800)

СУММПРОИЗВ(массив1;массив2;массив3; ...)- перемножает соответствующие элементы заданных массивов (диапазонов) и возвращает сумму произведений.

Массив1, массив2, массив3, ... — от 2 до 30 массивов (диапазонов), чьи компоненты нужно перемножить, а затем сложить; они должны иметь одинаковые размерности.

Примечание. СУММПРОИЗВ трактует нечисловые элементы массивов как нулевые.

Например,

	А	В	С		
1	Наименование	К-во кг	Цена за кг		
2	Яблоки	1,2	45		
3	Груши	2	48		
4	Апельсины	5,3	60		
5	Мандарины	4	65		
6	Итого:	=СУММПРОІ	=СУММПРОИЗВЕД(\$B\$2: \$B\$5; \$C\$2:\$C\$5)		

Статистические функции

МИН(аргумент1;аргумент2; ...) - возвращает наименьшее значение среди перечисленных аргументов. Число1, число2, ... - от 1 до 30 чисел или диапазонов, среди которых требуется найти наименьшее.

МАКС(аргумент1;аргумент2; ...) - возвращает наибольшее значение среди перечисленных аргументов.

НАИБОЛЬШИЙ (массив; k) - возвращает k-ое наибольшее значение из множества данных .

где Массив - это массив или диапазон данных, для которых определяется k-ое наибольшее значение.

К - это позиция (начиная с наибольшей) в массиве или диапазоне ячеек данных.

Эта функция используется, чтобы выбрать значение по его относительному местоположению. Например, функцию НАИБОЛЬШИЙ можно использовать, чтобы определить наилучший, второй или третий результат в баллах, показанный при тестировании.

Например,

	А	В	С	D	E	F
1	Баллы	4	5	5	3	4
2		=НАИБОЛЬШИЙ (\$B\$1:\$F\$1;1)				
3		=НАИБОЛЬШИЙ (\$B\$1:\$F\$1;2)				
4		=НАИБОЛЬШИЙ (\$B\$1:\$F\$1;3)				

Значения, которые будут занесены в ячейки:

B2	B3	B4
НАИБОЛЬШИЙ (\$B\$1:\$F\$1;1)	НАИБОЛЬШИЙ (\$B\$1:\$F\$1;2)	НАИБОЛЬШИЙ (\$B\$1:\$F\$1;3)
5	5	4
	Обратите внимание, что второе	
	наибольшее значение в блоке не	

наибольшее значение в блоке не 4, как можно было бы подумать, а 5, т.е. совпадает с первым наибольшим значением

НАИМЕНЬШИЙ(массив;k) - возвращает k-ое наименьшее значение в множестве данных.

СРЗНАЧ(аргумент1; аргумент2; ...) – находит среднее арифметическое аргументов.

В качестве аргументов можно указывать данные различных типов, но в подсчете участвуют только числа. Как правило, аргументами являются диапазоны ячеек. Пустые ячейки не учитываются, ячейки содержащие нулевые значения, учитываются.

СЧЁТ(аргумент1; аргумент2; ...) – подсчитывает количество чисел в списке аргументов.

В качестве аргументов можно указывать данные различных типов, но в подсчете участвуют только числа, а также данные в формате «дата и время». Как правило, аргументами являются диапазоны ячеек.

СЧЁТЕСЛИ(диапазон; критерий) - подсчитывает количество ячеек внутри диапазона, удовлетворяющих заданному критерию.

Диапазон - это диапазон, в котором нужно подсчитать ячейки.

Критерий - это критерий в форме числа, выражения или текста, который определяет, какие ячейки надо подсчитывать. Например, критерий может быть выражен следующим образом: 32, "32", ">32", "

	runpiniep,		
	А	В	С
1	Наименование	Сорт	Количество
2	Яблоки	1	10
3	Апельсины	1	14
4	Персики	1	21
5	Яблоки	2	12
6	=СЧЁТЕСЛИ(А2:А5;"Яблоки ")	=СЧЁТЕСЛИ(В2:В5;"=1")	=СЧЁТЕСЛИ(В2:В5;">15")
	В А6 будет занесено число 2	В В6 будет занесено число 3	В С6 будет занесено число 1
	(т.к. значение "Ублоки" со-	(т.к. значение "1" содержит-	(т.к. только в однои ячеике
	держится в двух ячейках диа-	ся в трех ячейках диапазона	диапазона (С4) содержится
	пазона (А2 и А5)).	(B2-B4)).	значение больше 15).

Например.

Логические функции

Логическое выражение (значение) - это любое значение или выражение, которое при вычислении дает значение ИСТИНА или ЛОЖЬ.

ЕСЛИ(лог_выражение;значение_если_истина;значение_если_ложь)

где *Значение_если_истина* - это значение, которое возвращается в ячейку, если *лог_выражение* имеет значение ИСТИНА.

Значение_если_ложь - это значение, которое возвращается в ячейку, если лог_выражение имеет значение ЛОЖЬ.

В качестве *Значение_если_истина* или *Значение_если_ложь* может быть новая функция ЕСЛИ. =если(a1="д"; "правильно"; "нет")

И(логическое_значение1; логическое_значение2; ...) - возвращает значение ИСТИНА, если все аргументы имеют значение ИСТИНА; возвращает значение ЛОЖЬ, если хотя бы один аргумент имеет значение ЛОЖЬ.

Например, чтобы определить, принадлежит число из ячейки В4 диапазону [1,100], т.е. 1<=B4<=100, надо записать:

=(И(В4>=1; В4<=100)

ИЛИ(логическое_значение1;логическое_значение2; ...) - возвращает ИСТИНА, если хотя бы один из аргументов имеет значение ИСТИНА и ЛОЖЬ, если все аргументы имеют значение ЛОЖЬ. Например, ИЛИ (B4<0; B4>10) равняется ИСТИНА, если ячейка B4 содержит число, находящееся вне диапазона [0,10] и ЛОЖЬ – в противном случае.

НЕ(логическое_значение) - меняет на противоположное логическое значение своего аргумента. Если логическое_значение имеет значение ЛОЖЬ, то функция НЕ возвращает значение ИСТИНА и наоборот, еЕсли логическое_значение имеет значение ИСТИНА, то функция НЕ возвращает значение ЛОЖЬ.

Пример. Определить, сколько дней в году из ячейки А1.

Решение.

Проблема сводится к определению, является ли год високосным. Невисокосными являются года, которые не делятся на 4 и года, которые делятся на 100, но не делятся на 400.

=ЕСЛИ(ИЛИ(ОСТАТ(А1;4) <>0;И(ОСТАТ(А1;100)=0;ОСТАТ(А1;400) <>0));365;366)

Функции для работы с датой и временем

ВРЕМЯ(часы; минуты; секунды) - возвращает целое число, представляющее определенное время.

где Часы — число от 0 до 32767, задающее часы. Если значение больше 23, его можно разделить на 24; остаток от деления будет соответствовать значению часов.

Например, ВРЕМЯ(27;0;0) = ВРЕМЯ(3;0;0) = 0,125 = 3:00 АМ

Минуты — число от 0 до 32767, задающее минуты. Если значение больше 59, оно будет пересчитано в часы и минуты.

Секунды — число от 0 до 32767, задающее секунды. Если значение больше 59, оно будет пересчитано в часы, минуты и секунды.

ДАТА(год;месяц;день) - возвращает целое число, представляющее определенную дату. Если до ввода этой функции форматом ячейки был **Общий**, результат будет отформатирован как дата.

Где Год - аргумент, который может иметь от одной до четырех цифр.

Месяц - число, представляющее месяц года.

Если значение аргумента больше 12, введенное число месяцев отсчитывается от первого месяца указанного года. Например, ДАТА(2008;14;2) возвращает число, соответствующее 2 февраля 2009 года. *День* - число, представляющее день месяца.

Если значение аргумента больше числа дней в указанном месяце, введенное число дней отсчитывается от первого дня месяца.

Например, ДАТА(2008;1;32) возвращает число, соответствующее 1 февраля 2008 года.

Пример. Случайным образом сгенерировать список дней рождений.

Решение.

	A	В	С	D	E
1		Год	Месяц	День	
2	0т	1970	1	1	
3	Дo	1985	12	31	
4	Ne	Год	Месяц	День	Дата
4 5	N <u>∘</u> 1	Год Форула1	Месяц Формула1	День Формула1	Дата Формула2
4 5 6	<u>N</u> 1 2	Год Форула1 Форула1	Месяц Формула1 Формула1	День Формула1 Формула1	Дата Формула2 Формула2
4 5 6 7	Nº 1 2 3	Год Форула1 Форула1 Форула1	Месяц Формула1 Формула1 Формула1	День Формула1 Формула1 Формула1	Дата Формула2 Формула2 Формула2

Формула1: =ОКРУГЛ(СЛЧИС()*(В\$3-В\$2);0)+В\$2 Формула2: =ДАТА(В5;С5;D5)

Примечание. Чтобы полученную с помощью формулы дату скопировать как числовое значение, надо выделить диапазон; выбрать команду *Правка \ Копировать*; выбрать команду *Правка \ Специальная вставка*; поставить переключатель *Вставить значения*.

ДЕНЬНЕД(дата;тип) - возвращает день недели, соответствующий дате. День недели определяется как целое число.

Тип - это число, которое определяет способ нумерации дней недели.

Тип	Возвращаемое число
1 или опущен	Число от 1 (воскресенье) до 7 (суббота).
2	Число от 1 (понедельник) до 7 (воскресенье)
3	Число от 0 (понедельник) до 6 (воскресенье)

СЕГОДНЯ() – возвращает текущую дату.

Пример. Определить примерный возраст человека по дате рождения, находящиеся в ячейке В2. Решение.

	A	В	С	D	E	F
1	ФИО	Дата рождения	Возраст			
2	Иванов И.И.	03.10.1971	=ОКРУГЛ	ВНИЗ((СЕ	годня()-в	2)/365;0)

Текстовые функции

СЦЕПИТЬ (значение1;значение2;...) – объединяет несколько текстовых строк в одну.

где значение1, значение2, ... - это от 1 до 30 элементов текста, объединяемых в один элемент текста. Элементами текста могут быть текстовые строки, числа или ссылки, которые ссылаются на одну ячейку.

Примечание. Вместо функции *СЦЕПИТЬ* для объединения текстов можно использовать оператор «&».

Например, Имеется таблица, в которой Фамилия, Имя и Отчество располагаются в трех столбцах A,B и C соответственно. Чтобы объединить ФИО в один столбец надо: –СПЕПИТЬ(A1:" ":B1:" ":C1)

=СЦЕПИТЬ(А1;" ";В1;" ";С1)

Финансовые функции

Аргументы.

Ставка - процентная ставка по ссуде.

Кпер – количество выплат по ссуде.

Пс – значение ссуды или общая ((полная, приведенная)) стоимость.

Бс - требуемое значение будущей стоимости, или остатка средств после последней выплаты. Если аргумент *бс* опущен, то он полагается равным 0 (нулю), т.е. для займа, например, значение *Бс* равно 0. *Плт* - это выплата, производимая в каждый период; это значение не может меняться в течение всего периода выплат. Если аргумент опущен, должно быть указано значение аргумента *Пс*.

Тип — число 0 или 1, обозначающее, когда должна производиться выплата.

Тип	Когда нужно платить
0 или опущен	В конце периода
1	В начале периода

ПЛТ(ставка;кпер;пс;бс;тип) - возвращает размер периодического платежа, необходимого для погашения ссуды за определенный период времени.

Пример. Определить размер ежемесячных платежей при ссуде в \$10000 на срок в 3 года под 9% годовых.

=ПЛТ(9%/12;3*12;10000)

Примечание. Для нахождения общей суммы, выплачиваемой на протяжении интервала выплат, надо умножить возвращаемое функцией ПЛТ значение на «кпер».

БС(ставка;кпер;плт;пс;тип) - возвращает будущую стоимость инвестиции на основе периодических постоянных (равных по величине сумм) платежей и постоянной процентной ставки.

Пример. Сколько будет на счету, если в течение 30 лет вкладывать по 2000 в месяц при 10% годовых. Решение.

=БС(10%/12;30*12;-2000;;1)

(расчет процентов в начале месяца, если 0 – в конце и тогда общий результат меньше)

СТАВКА(кпер;плт;пс;бс;тип;предположение) - возвращает норму прибыли за один период.

Пример. Подсчитать планируемую норму прибыли, если вы ссудили другу 120000 на строительство дома с ежегодной выплатой 32000 в течение 5 лет.

Решение.

=CTABKA(5;32000;-120000) Ответ=10%

ПС(ставка;кпер;плт;бс;тип) - возвращает приведенную (к текущему моменту) стоимость инвестиции. Приведенная (нынешняя) стоимость представляет собой общую сумму, которая на настоящий момент равноценна ряду будущих выплат.

Пример. Условия страховки: 500 руб. платится в конце каждого месяца в течении 20 лет при 8% годовых.. Определить, общую стоимость выплат.

Решение.

=ΠC(8%/12;20*12;500;;0)

Функции проверки свойств и значений

ЕПУСТО(ссылка) – логическая функция, принимает значение ИСТИНА, если указанная ячейка пуста и ЛОЖЬ, в противном случае.

ЕЧИСЛО (ссылка) – логическая функция, принимает значение ИСТИНА, если в указанной ячейке - число.

ЕТЕКСТ (ссылка) – логическая функция, принимает значение ИСТИНА, если в указанной ячейке - текст. (Если в ячейке число, пусто или дата, то возвращает - ложь).

6. Практические советы.

- 1. Если вид выводимой информации не совпал с вашими ожиданиями (вместо даты число или наоборот), то надо изменить формат ячейки: *Формат* *Ячейки*: *Число*.
- 2. Редактировать содержимое формул можно двумя способами: либо нажав F2, либо щелкнув мышью в строке формул (при ее отсутствии на экране, вызвать ее можно через команду *Вид \ Строка формул*);
- 3. При написании формул, содержащих ссылки на другие ячейки (например, =B1) или диапазон ячеек (например, =сумм(\$B3:\$B5)) можно адреса выбирать с помощью щелчка мышью по нужной ячейке или выделив мышью нужный диапазон.
- 4. Выбрать тип ссылки (относительная, абсолютная, смешанная) F4.
- 5. Если необходимо выделить одновременно ячейки из разных концов таблицы (например, ячейку A3, ячейки с B2 по B8 и ячейку C4), то выделяют их при нажатой клавише Ctrl.
- 6. Если необходимо размножить содержимое одной ячейки в ближайшие ячейки по вертикали или горизонтали, то необходимо "потянуть" ячейку за квадратик, расположенный в правом нижнем углу.
- 7. Аналогично можно, например, пронумеровать строки; для этого: в первых двух строках пишем номера 1 и 2, затем выделяем обе ячейки и тянем за правый нижний угол; этот же способ годиться и для букв, и для написания названий месяцев и т.п.

- 8. Объединение нескольких ячеек в одну и возврат: выделить группу ячеек, которые необходимо объединить, включить режим объединения строк (*Формат* \ *Ячейки* \ *Выравнивание:* ⊽ *Объединение ячеек*) или с помощью пиктограммы .
- 9. Расположить многострочный текст в одной ячейке можно, если включить соответствующий режим (*Формат* \ *Ячейки* \ *Выравнивание:* ⊽ *Переносить по словам*), разбить одну строку на две при этом можно нажав Alt+Enter.
- 10. Обрамление и заполнение лучше всего делать в самом конце, потому что при копировании, перемещении ячеек оно нарушается.

Ссылки и массивы

ВПР(искомое_значение;таблица;номер_столбца;интервальный_просмотр) - ищет значение в крайнем левом столбце указанной таблицы и возвращает значение в той же строке из указанного столбца таблицы.

Буква «В» в имени функции ВПР означает «вертикальный».

Искомое_значение — это значение, которое должно быть найдено в первом столбце таблицы. Искомое_значение может быть значением, ссылкой или текстовой строкой.

Таблица - таблица с информацией, в которой ищутся данные. Можно использовать ссылку на интервал или имя интервала.

Номер_столбца — это номер столбца в массиве «таблица», в котором должно быть найдено соответствующее значение.

Если «номер_столбца» равен 1, то возвращается значение из первого столбца аргумента «таблица»; если «номер_столбца» равен 2, то возвращается значение из второго столбца аргумента «таблица» и т.д.

Интервальный_просмотр – значение логического типа, которое определяет, нужно ли, чтобы ВПР искала точное (при *ЛОЖЬ*) или приближенное (*ИСТИНА* или пропущено)соответствие. Примечания.

- Значения в первом столбце аргумента «таблица» могут быть текстовыми строками, числами или логическими значениями.
- Текстовые строки сравниваются без учета регистра букв.
- Если Интервальный_просмотр ИСТИНА, то значения в первом столбце таблицы должны быть расположены в возрастающем порядке: ..., -2, -1, 0, 1, 2, ..., А-Z, ЛОЖЬ, ИСТИНА.
- Если ВПР не может найти *искомое_значение* и *интервальный_просмотр* имеет значение *ИСТИНА*, то используется наибольшее значение, которое меньше, чем *искомое_значение*.
- Если *искомое_значение* меньше, чем наименьшее значение в первом столбце аргумента «таблица», то функция ВПР возвращает значение ошибки #H/Д.
- Если ВПР не может найти *искомое_значение* и *интервальный_просмотр* имеет значение ЛОЖЬ, то ВПР возвращает значение ошибки #H/Д.

Пример.

Оклад работников бюджетной сферы определяется по Единой тарифной сетке (ЕТС) и зависит от разряда. На *листе 1* расположена таблица расчета оклада в зависимости от разряда. На листе *Сотрудники* список сотрудников с указанием разряда. Каждому сотруднику подставить оклад.

	Разряд		_
	A	В	С
1	 Минимальный размер оплаты труда 		1680
	Разряд	Коэффициент	Оклад
2	ETC		
3	1	1	1680,0
4	2	1,11	1864,8
5	3	1,23	2066,4
6	4	1,36	2284,8
7	5	1,51	2536,8
8	6	1,67	2805,6
9	7	1,84	3091,2
10	8	2,02	3393,6
11	9	2,22	3729,6
12	10	2,44	4099,2
13	11	2,68	4502,4
14	12	2,89	4855,2
15	13	3,12	5241,6
16	14	3,36	5644,8
17	15	3,62	6081,6
18	16	3,9	6552,0
19	17	4,2	7056,0
20	18	4,5	7560,0
20	18	4,5	7560,0

Решение.

На листе 1 диапазону значений присвоим имя *Разряд*. В ячейку D2 запишем формулу, после чего скопируем ее на все другие ячейки.

D2 🔻 🏂 =ВПР(Сотрудни			ки!С2;Разряд;З;ЛОЖЬ)		
	Α	В	С	D	
1	N≏	ФИО	Разряд	Оклад	
2	1	Абрамов Илья Борисович	11	4502,40	l
3	2	Антонова Ольга Андреевна	12	4855,20	Ĺ
4	3	Арканов Антон Викторович	14	5644,80	
5	4	Бочкина Ирина Сергеевна	14	5644,80	
6	5	Волков Андрей Евгеньевич	17	7056,00	
7	6	Донцов Артем Леонидович	12	4855,20	
8	7	Егоров Александр Александрович	11	4502,40	
9	8	Конаков Игорь Евгеньевич	5	2536,80	
10	9	Королева Екатерина Николаевна	18	7560,00	
11	10	Красько Павел Иванович	15	6081,60	
					_

Лист Сотрудники

Лист 1

ГПР(искомое_значение;таблица;номер_строки;интервальный_просмотр) - ищет значение в верхней строке таблицы или массива значений и возвращает значение в том же столбце из заданной строки таблицы.

Буква Г в ГПР означает «горизонтальный». Функция ГПР используется вместо функции ВПР, когда сравниваемые значения расположены в верхней строке таблицы данных, а возвращаемые значения расположены на несколько срок ниже.

7. Условное форматирование.

При задании условного форматирования листа, оформление ячеек (заливка и граница ячейки, цвет, способ форматирования и начертания символов) меняется в зависимости от их содержимого.

Это позволяет привлечь внимание к самым важным данным (например, росту биржевого курса или резкому увеличению расходов) или на неправильно введенные данные.

Условное форматирование - формат (например, узор ячейки или цвет шрифта), который Excel автоматически применяет к ячейке, если выполняется заданное условие.

Как добавить, изменить или удалить условное форматирование

- I. Выбрать ячейку, для которой требуется добавить условное форматирование.
- II. Команда **Формат \ Условное форматирование**.
- III. В появившемся окне (рис. 1) задать от 1 до 3 условий, используя значения или формулы, и выбрать для каждого условия тип форматирования (кнопка *Формаm*), который требуется применить, когда значение ячейки отвечает условию или формула возвращает значение ИСТИНА.

Условное форматировани	e	? 🔀
Условие <u>1</u> формула 💌 =\$A\$1=\$A	\$2	<u></u>
Отображение ячейки при выполнении условия:	АаВьБбЯя	<u>Ф</u> ормат
Условие <u>2</u> значение 💌 между	🔹 🛛 🔜 и	100 💽
Отображение ячейки при выполнении условия:	Формат не задан	Формат
2 <u>А</u> также >>	удалить ОК	Отмена
	Рис.1	

Удаление условия формат ?	×				
Укажите, какие условия удалять: — Условие <u>1</u> условие <u>2</u> условие <u>3</u> ОК Отмена					
Рис.2					

9

Примечания.

- 1. Чтобы в качестве условия форматирования использовать значения выделенных ячеек, надо выбрать параметр *Значение*, операцию сравнения, а затем ввести заданное значение (пример 1)или формулу. Перед формулой нужно поставить знак равенства (=) (пример 2).
- 2. Для использования формулы в качестве критерия форматирования надо выбрать параметр **Форму**ла, а затем ввести формулу, принимающую логическое значение ИСТИНА или ЛОЖЬ (см. пример 3).
- 3. Можно задать до трех Условий, после задания 1-го условия выбрать кнопку А также.
- 4. Если ни одно из заданных условий не принимает истинного значения, формат ячеек остается прежним.
- 5. Если из нескольких указанных условий два и более принимают истинное значение, применяется только тот формат, который соответствует первому истинному условию.
- 6. Для удаления одного или нескольких условий выбрать команду *Удалить* в окне *Условное форматирование*, а затем установите флажки для тех условий, которые необходимо удалить.

Пример 1. На столбец, в ячейки которого пользователь будет вводить номер месяца, задать условное форматирование.

Решение.

Если значение не попадает в диапазон [1,12], то применить условное форматирование (рис.3).

Условное форматирование	9	? 🛛	
Условие <u>1</u> значение т вне	🔽 1 💽 и	12 🗾	
Отображение ячейки при выполнении условия:	АаВьБбЯя	формат	
<u>А</u> также >>	<u>Удалить</u> ОК	Отмена	
	Рис.3		

Пример 2. В диапазоне [B2:B10] записаны оклады сотрудников отдела. Выделить цветом те из них, которые меньше среднего оклада по отделу.

Решение.

Если значение не попадает в диапазон [1,12], то применить условное форматирование (рис.4).

Пример 3. Задать условное форматирование на ячейки D2:D7, при котором при вводе в ячейки значений отличных от М и Ж ячейки закрашиваются в серый цвет.

Решение.

1. На ячейку D2 задать условное форматирование, используя логическую функцию И. В данном случае для Excel не имеет значения прописные или строчные буквы М и Ж, поэтому предусматривать это вариант не надо.

Так как предполагается копировать значение ячейки в диапазон, то использовалась смешанная адресация.

- 2. Перейти на вкладку **Формат** и выбрать команду **Вид**. Задать цвет заливки.
- 3. «Растянуть» первую ячейку диапазона на оставшиеся ячейки.

	A	В	C	D				
1	Фамилия	Имя	Отчество	Пол	Условное форматирование 🛛 🛛 🤶 🔀			
2				ж.,	_Г Условие <u>1</u>			
3				М	формула ▼ =И(\$D2<>"м";\$D2<>"ж")			
4								
5				М	Отображение ячейки при АаВbБбЯя	Формат		
6				Ж	выполнении условия:			
7				р				
8								

Рис.3

8. Использование имен диапазонов.

Диапазонам ячеек листа и отдельным ячейкам можно присвоить имя, после чего оно может быть использовано в любой формуле книги.

Требования к именам:

- должны начинаться с буквы;
- не могут содержать пробелов, вместо пробела используется знак подчеркивания;
- должно быть уникальным;
- рекомендуется не более чем из 15 символов.

Чтобы присвоить диапазону имя надо:

- 1. Выделить диапазон.
- 2. Выбрать команду *Вставка* \ *Имя* \ *Присвоить* или задать имя в поле *Имя*.

Чтобы изменить диапазон надо:

- 1. Выбрать команду Вставка \ Имя \ Присвоить.
- 2. В появившемся окне выбрать имя диапазона, который надо изменить; в строке *Формула* указать новый диапазон.
- 3. Выбрать ОК.

Чтобы удалить имя диапазона надо:

- 1. Выбрать команду Вставка \ Имя \ Присвоить.
- 2. В появившемся окне выбрать имя диапазона, который надо удалить.
- 3. Выбрать кнопку Удалить.